Thursday, September 1, 2011

Download link for my dissertation

Please right click HERE (choose "save Target as") to download my dissertation file (with letters, pictures in the last several pages) to know more about my research and my capability ...
\\\\\\\\\\\\
| (o o)
^ ~(_)~
+------oooO-------Oooo--------------+
| Dr. TZUU-WANG CHANG |
| MCSE (NTAS,NTWS 3.51) |
| MCP ID:389682 |
| MS in Molecular Genetics |
| MS in Computer Science |
| Ph.D in Biomedical & Biotech |
+--------------------------------------+
| email-1: HOTMAIL |
| email-2: VERIZON |
| My Personal Blog |
| MSN : alextwc |
| Skype : alextwc |
| 1-508-542-6679 |
|--------------------------------+
|_| |_|
|| ||
ooO Ooo
Now we realize that the phenomena of chemical interactions and,
ultimately, of life itself are to be understood in terms of electromagnetism.
[Feynman Lectures on Physics Volume II, Section 1-6, Page 1-10]

Sunday, May 29, 2011

Toxic plasticizers were mixed into provision chains in Taiwan

An issue recently happened in Taiwan about toxic plasticizers were added into many provisions (such as cloudy agent...) has caused a big panic among the masses of Taiwan. Here I wanna supply additional information (of course in Chinese fonts) to the public (of Taiwan).

(1). 所有的塑膠製品均含 plasticizers, 含量越高該塑膠製品越軟, 反之越硬! (作為軟化劑使用)

(2). 很多高分子聚合物之單體分子具活潑性質, 易與其他有機分子起反應, 由此而衍生出細胞毒性, 甚至是生理毒性. 但在鏈合成高分子聚合物後, 則轉成為穩定且安全之材料, 因為穩定所以也不易分解, 可在自然界存在很久!

(3). 在極端條件(高溫, 高壓, 強酸, 強鹼, 高能輻射如 UV等等)下, 如果超出該塑膠製品的抗性臨界值, 就會溶解或還原出原組合單體分子甚至是衍生出其他分子, 使該塑膠製品重新產生毒性.

(4). Plasticizers 種類繁多, 各大化學公司均有開發與獨門配方, 在塑膠工業創始之際即開始使用至今, 但其安全性卻是最近 20 年才得到重視! 這和技術條件, 知識累積, 以及臨床案例統計分析有關.

(5). 化學分子的毒性測試環境, 從試管內 (in vitro), 到細胞細菌(微生物篩選), 到動物實驗, 到人體臨床等等條件不ㄧ, 有時在細胞培養時顯見之毒性, 到了注入動物之後卻不見其明顯, 有時使老鼠致命的毒物濃度, 到了人體卻沒有反應, 而且活體生理狀態下還有所謂的 ADME (Adsorbtion, Digestion, Metabolism, Excretion) 等四階段, 毒物的生理毒性有可能只出現在某特定階段, 因此更增添毒性偵測之困難與精確! 這就是為何近來很多毒性的判定都是靠資料累計加上分析技術進步所致, 很多以前看不出有毒的, 現在發現, 不是確認有毒, 就是高度懷疑有毒! 基本上學術界與主管單位對毒性認定採高標準, 只要細胞培養實驗證實有毒性就採取管制與公告! 如果動物測試產生生理毒性更是絕對禁用!

(6). 已經被國際與學界公告有毒的 Plasticizers, 公權力要介入並強制業界禁用, 為百姓健康把關! 台灣這次的風坡, 就是業者不長進, 沒有 update 學術資訊, 幾十年老配方沿用至今, 而政府主關單位同樣也資訊閉塞麻木不仁, 沒有主動化驗. 而且現在沒有被探測出有毒性的 plasticizers, 不代表未來不會被發掘出有毒性! 作研究的人都知道, 十大劇毒實驗室, 排名第一就是有機實驗室, 第二生化實驗室, 第三輻射能實驗室. 曾經聽過一棟有機實驗大樓裡所有的男性同事生的都是女兒, 當時就有人高度懷疑是這些研究中的 Plasticizers 搞的鬼!

(7). 生物體內有自然的防禦力 (免疫系統與分子代謝) 可以抵擋環境中的有害物質, 人類物質文明帶來生活上的便利也增添環境中的毒害與汙染, 手機電磁波的生理效應說不定下個 20 年就會被證實有害腦部神經組織! 面對這樣的工業發展, 社會大眾不需要恐慌變成 paranoid, 而是要投入供多資源進行相關醫學研究以解決問題!

(8). 聽說台灣現在很多人不敢再用塑膠袋而改用紙袋包熱食了, 看來樹木又要倒楣了, 而且紙上有印刷油汙可能含鉛喔, 紙纖維縫中可躲細菌孢子喔, 很多化妝品保養霜也含膠體和 Plasticizers 喔. 總而言之, 化學製品到處充斥, 利用這次機會對大眾進行一次科普教育也好!!

以下引用林天送教授文章:
塑膠用品共分七類,通常會在用品上註明,用一個帶箭頭的三角型,三角型裡面會有一個數字,一個數字代表一個材質品種,每個材質有不同的化學與物理性質。

Number 1:PET(Polyethylene terephthalate)
聚對苯二甲酸乙二醇酯,屬於polyester類,又稱寶特瓶。是一般礦泉水和飲料瓶的材質,你可曾注意到礦泉水瓶或碳酸飲料瓶等的底部有1號的標示?在室温下,塑化劑不會滲出流露,但如溫度升高或加熱到70℃以上就會變形,也就會有塑化劑流出來。故瓶裝礦泉水不能存放在汽車內,尤其是大熱天。也不要用空瓶去裝酒或油等物質。又1號塑料品不要多次使用,如果有空瓶存放在高溫,加上前次口腔的接觸,會釋放出致癌物的塑化劑,也會有菌體繁殖。

Number 2:HDPE(High Density Polyethylene)
高密度聚乙烯,密度大於0.940 g/cm³的塑料材質。農夫用的山泉4升裝的瓶底部就標示為2號塑料材質。也常用在白色藥瓶、清潔用品、沐浴產品。不要再用來做為水杯,或者用來做儲物容器裝其他物品。不容易清潔乾淨,故最好不要循環使用。

Number 3:PVC(Polyvinyl Chloride)
聚氯乙烯。為含氯的塑膠,比較硬的塑膠袋就屬於此類。常用在雨衣、建材、塑料膜、塑料盒等。可塑性優良,價錢便宜,故使用很普遍,只能耐熱81℃。加高溫時則容易流露塑化劑,有害健康。比較少用於食品包裝。難清洗乾淨也容易有殘留物質,故最好不要循環使用。若有用來裝熱的飲食品則不要購買。又PVC保鮮膜使用後通常是直接丟棄,進入焚化廠後,若焚燒溫度不當則易產生所謂世紀之毒「戴奧辛」(dioxin),它會造成下列疾病:癌症、心臟病、不孕症等。

Number 4:LDPE(Low Density Polyethylene)
低密度聚乙烯,密度:0.910–0.940 g/cm³,低分子量。常用在保鮮膜、塑料膜等。高溫時會流露毒物塑化劑,會隨食物進入人體,可能引起乳腺癌、新生兒先天缺陷等疾病。故保鮮膜不能用微波爐加熱。

Number 5:PP(Polypropylene)
聚丙烯。常用當豆漿瓶、優酪乳瓶、果汁飲料瓶、微波爐餐盒。熔點高達150℃,是唯一可以放進微波爐的塑料材質,可在小心清潔後重複使用。但需要注意,有些微波爐餐盒,盒體以5號PP製造,但盒蓋卻以1號PE製造,由於PE不能耐受高溫,故不能與盒體一起放進微波爐,這一點常被疏忽。又泡茶的塑料耐熱杯,底部是標示5。

Number 6:PS (Polystyrene)
聚苯乙烯。許多塑膠容器,包括免洗餐具大都屬這一類。又如一般發酵乳品塑膠的容器是未發泡的聚苯乙烯,保麗龍則是發泡的聚苯乙烯。常用在碗裝泡麵盒、快餐盒。不能放進微波爐,以免因溫度過高而釋出塑化劑。裝酸(如柳橙汁)、鹼性物質後,會分解出致癌物質。故當避免用當快餐盒或打包滾燙的食物,也別用微波爐煮碗裝方便麵。

Number 7:PC(Polycarbonate) & Others
其他雜類,包括,PC聚苯碳酸,常用當水壺、太空杯、奶瓶。百貨公司常用這樣材質的水杯當贈品。也是眼鏡鏡片材料。但很容易釋放出有毒的物質雙酚A(Bisphenols),對人體有害。故使用時不要加熱,也不要在陽光下直曬。

Sunday, April 3, 2011

The dialogue about "ENSEMBLE & Olbers' Paradox" with Mike Goykhman

Alex: I was thinking the "Canonical Ensemble". Do you think if our Universe behaves like a "Grand-canonical Ensemble" or an "Isothermal-isobaric Ensemble"? If you don't know what I am talking about then punish you to drink 3 beers.

Goykhman: The volume, temperature, and chemical potential are held constant in a Grand-Canonical Ensemble. The number of molecules, pressure, and temperature are held constant in an Isothermal-Isobaric ensemble. Neither can work to describe the universe. The volume of the universe is always expanding so the Grand-Canonical cannot be correct. If the universe had a 'pressure' it would have to be in some sort of container, which is impossible if the boundaries are always expanding. If there was any pressure it would be negative pressure, from the accelerating expansion, but this would not be constant pressure (because the expansion isn’t constant) So that kind of scraps the Isothermal-Isobaric ensemble. If I had to pick one, it would be Grand Canonical, because I find the idea of the universe having a ‘pressure’ much more ridiculous than a constant volume. What were your thoughts?

Alex: Ha ha ......LOL~ Very good!
At least you have started thinking more than drinking or smoking more LOL~
The idea of ENSEMBLE is designed for relating the microscopic properties (such as kinetic or potential energy, dipole moment....) of each atom or molecule to the macroscopic properties (such as pressure, temperature, thermodynamic parameters, volume....) of global universe in "Statistical Mechanics/Physics" (by using Partition Function). Maybe my question was not given in clear definition by explaining you more statistical background (in probability theory & mathematical equations). I was actually asking you which fundamental micro-models will better-fit the macroscopic properties of our global universe. The answer, of course is "No Different". Ha ha ha ....this is a trick to test your statistical foundation. Because when the scale of ENSEMBLE increase, the differences that caused by different micro-models will be close to zero. Also, the definition of PRESSURE is nothing to do with container but only to do with force (on surface). Think about the atmosphere (barometer) of the Earth. Is it within a container? Also, we do measure the pressure in vacuum or space (the value is close to 0 but is not zero) with regardless of whether it is inside a container or not. When you touched the argument about the boundary of our Universe, it is another important topic about astrophysics. Go to my wall and read my comment about Olbers' Paradox and you will find something interesting. Keep trying! Don't give up!

Alex: "Olbers' Paradox" is very interesting to me. I have recently read some articles about it. But I hereby want to propose an opposite way to think about it. I would like to ask why our day sky is much brighter than night sky. The day sky on the moon is relatively still dark than it on the earth. So the day sky on the moon is in the true and normal brightness that we should see in our universe. Kepler is actually the first person to notice about this paradox. If either Kepler or Olbers was living on the moon they probably would think it is no big deal because the day sky is only a little bit brighter than the night sky on the moon. The atmosphere of our planet Earth has amplified the brightness of day sky by scattering the sunlight. But Olbers' paradox is still a good observation and argument about the essence of our Universe even the brightness of day sky is not that big different from that of night sky in most planets of our Universe. The big bang theory has even predicted the future night sky will become darker more and more.

Megan Barker: I wish statistics would die. Please die statistics. Someone tell me why I need this class? :( Two more assignments and I'll be halfway done.

Alex: Let's say if you want to design a door (of an elevator or an entrance...whatever...) which its height can allow 95% American adults to pass through it, then you need to know the 95% confidence interval of the average mean of the American adult height. Another example, you want to define the hypertension then you have to know the average mean of the normal blood pressure first. You want to know if your developed medicine does work on patients then you gotta do the statistical test. Simply saying the STATISTICS is the most powerful prediction science in human civilization therefore every modern (industrialized) country has its own "National Statistics Bureau". Statistics can mainly do two kind of things: (1)Descriptive statistics, help you to find out the common features of a given data set. (2)Inferential statistics, help you find out the logical correlation and turn the data to be useful information and ultimately become knowledge. Probability Statistics has been widely used in many stochastic computations to generate many useful knowledge such as Quantum Mechanics, Molecular Evolution, Quantitative Economics ...etc. The modern Mathematics can be simply classified as three domains: Discrete Math, Continued Math (Calculus) and Statistics. If you don't like statistics you will miss a bunch of great math subjects and tools. If you disagree the values of above, then at least you will buy this point. "Statistics related jobs all are high-income jobs." The last word I wanna give you: STATISTICS never lies, STATISTICIAN does!

Tuesday, February 8, 2011

如何自製除臭劑與芳香劑....?

(原文記錄於 Jan-4-2010)

Nathan: 對了~Alex兄~最近咱家旅館煙癮重的客人變多了~加上天氣冷又潮濕~那整個煙味都附著在房間很難消去~如果我想節省成本自個兒去化工行調配芳香劑~你能給點建議嗎?

Alex: 這個問題大致上可以分成三個部分來回答:
(1). 自製除臭劑
(2). 自製芳香劑
(3). 自製香精(精油,香水)
我認為自行製作的最大好處不是在省錢, 而是在純天然和安全.早期化工製備的除臭劑多含 Aluminum powder, 芳香劑則多含 paraben 類的化合物這些東西在人體內累積到一定劑量後就是 neurotoxic. 對人體有害! (Paraben: 是對基苯類的芳香烃化合物)
以下簡單說明一下替代品與如何自行製作:
(1). 除臭劑部分: 可以用 Baking Soda (NaHCO3 碳酸氫鈉) 又叫蘇打粉來代替, 它就是最好的除臭劑. 所有的衣服毛巾床單等等在洗滌之前先在蘇打粉溶液中浸泡半小時以上, 蘇打粉溶液濃度自行斟酌使用. 地毯清潔洗液也可加入蘇打粉 , 也可以用不織布作成囊袋, 內裝填蘇打粉與極少許的活性碳粉成自製的除臭包放置在有潮濕霉味菸味等異味處吸臭與吸濕, 等到粉末結成塊狀後, 先分離掉活性碳顆粒, 剩餘蘇打粉部分再拿去洗衣服用, 可保不浪費!
(2). 芳香劑部分: 將市售的精油混入70%的酒精中 (比例自行斟酌, 精油比例越高越香濃而已) 倒入噴瓶, 看你用哪種精油就是哪種香味! 如果連市售香精油部分都不 trust 的話, 就自己來萃取提煉, 這樣就要繼續往下看第三點.
(3). 自製香精部分: 這個技術英文叫作 Fragrant Potpourri, 網上有很多資料你可以自行參考. 這裡我教你一個最簡單的方法, 連不懂化學的白癡都學得會. 基本上就是酒精萃取, 再加上洋菜膠作為固體基質, 作好後(像果凍)可以放置到床底桌腳等暗處讓其慢慢恢發, 等到乾掉後再加水重新熬煮(就是重複使用洋菜膠之意).

以芸香科植物的香精提煉為例: 去收集柚子皮與橘子皮與檸檬皮等等, 越多越好! 材料混合比例: 含香精的植物果皮 (或花卉) 30 克, 95% 酒精 100 cc, 市售洋菜粉 (Agarose Powder) 4 克, 水 300 cc

製作步驟:
(A) 先將植物果皮部分切成塊或絲, 泡在 95% 酒精中放置一夜後, 丟掉果皮等固體, 僅留液體等待下一步驟
(B) 將 Agarose Powder 倒入水中開始加熱熬煮至 Agarose Powder 完全溶解呈透明狀
(C) 此時倒入 A 步驟的酒精萃取液並完全攪拌混勻, 酒精成分就藉由高溫讓其揮發掉
(D) 然後分批倒進布丁盒中, 靜置冷卻到凝固即可完成 (Agarose 乾掉後可以 re-use)

Sunday, February 6, 2011

白人, 黑人, 黃人 ..... 我們真的都是一家人!!

(原文記錄於 Feb-10-2010)

從 DNA Sequence 上來看, 地球上所有的人類都是同一個品種. 五官體態等外型上的差異, 純粹是長期的環境適應(包括地形與氣候)與後天營養調適所累積的結果. 遺傳的影響只在兩代之間, 但地理氣候與後天營養卻能逐漸累積變異最後大幅改變人種的外貌. 首先地理環境與氣候型態就決定了生存在該環境人類的生活型態, 像是覓食能力, 食物種類, 勞動條件, 疾病種類, 生存競爭, 與擇偶標準等等, 而這些條件加總起來, 就是當地特有的基因選汰函數 (selection function), 會決定哪些適應較佳的外表基因可以有更多的 copy number 遺傳下去! 遺傳的目的其實是在確保子代與親代之間的不變, 我們都誤以為要挑一個外型佳的配偶來改變我們下一代的外型, 其實真正能型塑我們外表的是地理氣候與後天營養, 只是這種型塑要經過幾百年至少五代之後才看得出來! 眼睛大小, 鼻軟骨翹度, 膚色深淺, 毛髮分佈與濃密度, 角皮質組成與厚度(膚質), 嘴巴裂度, 耳盤彎度等等, 這些全部是長期累積的環境適應結果! 所以千百年下來住在同一個地理位置的民族, 大家彼此之間拿到的外表基因其實都差不多, 這就是所謂的民族風貌長相印痕, 互相婚配之後的下一代有些眼睛大ㄧ些有些小ㄧ些, 或其他五官上的小差異等等, 大部分是胚胎發育時的營養條件所造成! 所以不要對什麼歹竹出好筍的現象感到奇怪, 因為只要社會整體衛生與營養條件都上升, 子代ㄧ般都會發育的比上一代好!

Monday, January 31, 2011

The Brainwave

The β-brainwave (13~38 Hz) dominates our consciousness when awake. θ-brainwave (4~7 Hz) reflects our subconsciousness & dreaming. δ-brainwave (0.5~3 Hz) reflects our unconsciousness. The α-brainwave (8~12 Hz) plays a role of bridging our sub- & consciousness to develop our Extra Sensory Perception & Psychokinesis. The α-brainwave will be largely decreased when we are eye-opened and getting older. Meditation can help us to convert our β-brainwave to α-brainwave.
Simply saying, slow down the biorhythms of your brain.

GFAJ-1 Strain

The most recent and biggest news to the academic community has came from NASA these days. They just announced the evidences of new life form and claimed the GFAJ-1 strain can live under the environment without Phosphorus but using Arsenic instead. To me they still haven't shown the direct evidence that Arsenic directly replaced the P in phosphodiester bond of DNA backbone, ATP and other molecules.
Not only for lacking of direct evidence (eventhough the isotope labelling showed the radioactivity came with nucleic acid fraction together, it could still be interpreted as a contamination), it is also still arguable about the stability of As-O bond. From chemical viewpoint, the As-O bond is very unstable and much weaker than P-O bond. Really don't know how does this tiny creature work with Arsenic.

The strongest superacid in the Earth

Fluoroantimonic acid (the mixture of HF and SbF5) is the strongest known superacid (much stronger than Aqua Regia), which can almost protonate all known organic compounds. If mixing it with water then it will cause explosion immediately.

Movies "Wall Street I & II"

Alex: Just finished watching two movies, the "Wall Street I" and "Wall Street II (Money Never Sleeps)". Ironically the actor's lines of "Wall Street I" is even still very true today especially in the aftermath of "Financial Tsunami". Those who invented and designed varied financial products and derivatives are all graduated from excellent schools such as the department of mathematics of MIT etc. Wrongly using their intelligence and gradually become extremely selfish and greedy opportunists after soaked into the dye-vat of wall street. I oppose Communism but I do prefer the role that Martin Sheen played in "Wall Street I" and the words he said in the end.
Alex: Gordon Gekko said "Greedy is good". Moral Hazard is turning the nation into evil empire.

Mario: Greed is never satisfied, and that is why... greed is bad!

Sunday, January 9, 2011

New method in developing biomarkers for early diagnosis of diseases

Combinatory Chemistry is becoming a powerful tool in developing new theraputic & diagnostic agents. Similar to the inhibitory RNA aptamer against botulinum neurotoxin that I screened, the "peptoids library (artificially synthetic molecules)" has been recently screened to identify the potential candidates that stimulate more IgG binding in patietns than that in healthy person. Simply saying, you can inject the same peptoid into a "normal:diseased" pair of animals/human. If the immune system of the tested animals/human triggered an equal amount of IgG against the injected peptoid in both healthy and diseased group then this peptoid is useless. Therefore you can discard it and try the next peptoid candidate. You just keep repeating this process till you can find a peptoid candidate that trigger the immune system of diseased animal/human to produce at least three-fold higher levels of IgG than that in healthy animal/human. Thus this peptoid candidate becomes an useful biomarker to be used in early diagnosis of disease onset in other potential patients. Under this concept the identification of antigens of diseases become non-revelant. You don't even need to know the antigens of the immune response first. This new method can be applied in the early diagnosis of many neuro-degenerative diseases such as Alzheimer disease and Parkinson disease and so on.